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1         Summary 

•     The way ecologists think about canopy biology as a scientifi c discipline could 
lead them to overlook different communities of spatially fi xed organisms that 
may have properties usefully compared to or contrasted with forest canopies. 
This chapter represents a series of discussions and reviews on the possible nature 
and limits of canopy biology and introduces the prospect of a general compara-
tive science of biological canopies.  

•   Rather than restricting canopy biology to plants in terrestrial systems, I argue that 
 canopy  can be defi ned in terms of the parts of any community of sessile organ-
isms that emerge from a substratum, the structural products derived from them 
included. This opens the fi eld to diverse communities that could share many 
properties with forest (or plant) canopies. I overview the canopy literature on kelp 
forests, algal turfs, periphyton, bacterial fi lms, and coral reefs. The word  canopy  
has already been applied to each of these ecosystems. Periphyton and biofi lms in 
particular have great potential as model systems for studying assembly rules for 
the physical structure and dynamics of canopies.  

•   Among the similarities and differences between these types of canopy are the 
distribution of resources, such as light and nutrient gradients; factors affecting 
these distributions, such as the fl ow of air or water; and the resulting disposition of 
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the species living within this matrix. Prioritizing a search for general principles 
must be a primary goal of comparative canopy biology because the microhabitats 
generated by stratifi cation and other complex distribution patterns within 
communities are critical to sustaining global biodiversity.  

•   I consider fi ve rationales for the practice, the norm prior to this article, of limiting 
discussions of canopy biology to forests: if people have unique interactions with 
or concerns about forest canopies, if a substantive basis exists for treating trees as 
a distinct category of plant, if a substantive basis exists for treating trees as a dis-
tinct category in forests, if a substantive basis exists for treating forests as a dis-
tinct category of terrestrial community, or if attributes of the tree-crown residents 
and ground-rooted forest plants prove distinct. In no case is there unequivocal 
evidence for the usefulness of separating the study of forest canopies from the 
study of the aerial parts of other terrestrial plant communities.  

•   In mainstream ecology, the organisms of a community are typically studied in 
two dimensions, or as isolated points on the earth. While canopy biology encom-
passes all aspects of the study of the portion of a community that projects into a 
medium, the discipline can in large part be distinguished as the science of treating 
plants (or other sessile hosts) as three dimensional.  

•   In many studies of canopy species, the inhabiting organisms’ relationship to the 
canopy is treated as incidental. “Putting the canopy into canopy biology”—that 
is, contributing fundamentally to canopy biology as an independent fi eld of 
study—requires that the attributes of the canopy form an integral part of the 
research. This would include issues of community ecospace; properties emerg-
ing from community residents in aggregate, such as stratifi cation of microcli-
mate; host distributions; host architectures; properties of a canopy’s structural 
elements; and characteristics of the open spaces within a community.  

•   Applying the principles of canopy biology to communities as a whole, including 
those parts of sessile organisms and their associated species living on or in the 
substratum, suggests the value of developing a more comprehensive science, 
referred to here as structural ecology.    

 Words compartmentalize information, and that has many repercussions (Lakoff 
 1987 ). This affects how we identify subjects for academic study (Bates  1960 ; Hull 
 1988 ). The word  canopy  has been applied to vegetation in varied (Moffett  2000 ) and 
often inconsistent (Moffett  2002 ) ways, leading to varied interpretations of the 
domain of canopy biology. To select one example, if by canopy we mean the highest 
plant surfaces in a forest, as many authors do (e.g., Kricher  1997 ; the “outer can-
opy”), it is likely that, through habit, canopy biologists will develop a search image 
effective at picking out information only on the highest parts of the forest. In what 
philosopher W.T. Jones (in Bateson  1972 ) describes as the “topography of igno-
rance,” our knowledge of parallel and potentially useful studies on, say, shrubs and 
herbs, whether in forests or shorter ecosystems, or studies on the lower parts of for-
est trees, is likely to be marginalized. Such intellectual fragmentation is borne out 
by the literature. For example, citations on stratifi cation in herbaceous communities, 
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such as Monteith ( 1975/1976 ) or Liira et al. ( 2002 ), tend to be scarce in forest- canopy 
publications. One consequence can be independent discoveries by different 
academics, such as those working in agriculture, economic entomology, or land-
scape ecology, along parallel research tracks, thus wasting time and effort. 

 How, then, to delineate a discipline? While any “conceptual framing” can be 
arbitrary and subjective (Bohr  1955 ), the most compelling criteria are those of widest 
general importance to the experts. Consider the shifts in content and perspective 
between a biochemist’s focus on molecules and a cell biologist’s concern with 
structural integration, or a psychologist’s focus on mind and a sociologist’s interest 
in communities. In this respect, it makes little sense to grant canopy biology an 
independent status as a discipline if by canopy, we specifi cally mean “outer canopy.” 
After all, most aspects of the biology of the outer canopy change gradually from 
those features found among the plant organs lying beneath the topmost foliage. This 
is not to deny that some biologists must concentrate on the outer canopy because of 
its relatively pronounced features, such as the disproportionate signifi cance of upper 
leaves to forest productivity. 

 What is the most fruitful basis for delineating canopy biology as a discipline? 
I will show that there is no clear evidence, for example, for trees or forests being 
distinct from other terrestrial vegetation. Then I consider modifi cations of the defi -
nition of canopy that would encourage canopy biologists to compare environments 
previously ignored by forest ecologists, such as coral reefs and bacterial fi lms. 
Following this, I present some themes for an expanded canopy biology and consider the 
utility of establishing a fi eld of study more comprehensive than canopy biology—
one that applies the principles of canopy biology to communities of sessile organ-
isms treated as a whole, including those with a portion of their anatomies positioned 
on or beneath a substratum. I conclude by addressing the central role of comparative 
canopy biology, as well as addressing this more expansive discipline, referred to 
here as “structural ecology,” as a means of interpreting patterns of biodiversity at a 
global level.  

2     Seeing the Forest for the Herbs 

 The word  canopy  is often applied to the upper parts of forest ecosystems. Moffett 
( 2001 ) argued for incorporating the literature on all aerial parts of any terrestrial 
plant community as canopy biology. Because attributes of this vegetation and the 
species residing within it are likely to change gradually, in a relatively continuous 
way from one community to the next, and within a community from one height 
to the next, I propose that we adhere to this approach except when dealing with 
“concepts or situations necessarily restricted to trees” (Moffett  2000 ). In fact, no 
one has specifi ed any rationale for the common practice of restricting the scope of 
canopy discussions to trees or to forests (as in the useful distinction made between 
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“tree canopies” and “forest canopies” by Shaw  1996 ). Consider fi ve criteria by 
which forest canopies could merit this kind of separate attention (Fig.  3.1 ):

     1.     Humans have unique interactions with and concerns about forest canopies . 
Many people have grave concerns about the extinction of canopy species and 
great interest in the value of canopy products to societies past, present, and 
future. Because conserving the uppermost level of a forest is not possible without 
conserving its bottom, I would argue that conservation issues are most sensibly 
considered not specifi cally as canopy biology, but under the general rubric of 
ecology, which encompasses numerous aspects of economics, ethnography, and 
environmentalism.   

   2.     There is a substantive basis for treating trees as a distinct category . The diverse 
suite of characteristics associated with trees serves “as an example of the molding 
of the entire phenotype by selection pressures” that have come about convergently 
in numerous lineages (Niklas  1997 ). The ecological impetus discussed most often 
in reference to plant height is competition, especially for light (Tilman  1982 ; 
Givnish  1995 ; Leigh  1999 ; Sterck and Schieving  2007 ). The fundamental basis of 
“treeness” per se, however, may be biomechanical (Niklas and Kerchner  1984 ). 

  Fig. 3.1    Forest cross section revealed where the bank of the Rio Napo has fallen away. One can 
identify a number of strata, including an emergent tree towering above its neighbors ( at left ); the 
overstory trees in direct sunlight; the understory trees in the shade of the overstory; and a shrub 
layer below those. Between the overstory and understory is visible a dark open space commonly 
used as a fl yway by birds and bats. Because plant growth is dynamic with the height of each plant 
dependent on its age, species, health, and situation, including the distance and density of plant 
crowns overhead, each stratum in a community is unlikely to occur as exact layers at consistent 
heights, but instead will be “a product of localized conditions (e.g., varying jaggedly in a patch-
work of vegetation types or successional stages), and, even in a uniform environment, it need not 
exist at one height above ground but rather may occur relative to the distance from the outer can-
opy” (Moffett  2000 ) (Photograph by Mark W. Moffett, Minden Pictures. All rights reserved)       
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Any self-supporting terrestrial plant growing beyond a certain height appears to 
be developmentally channeled into evolving a main vertical trunk built of the 
stiffest available structural elements (especially around its perimeter), surmounted 
by a branched crown—in short, it becomes a tree. The transformation seems to 
occur in a similar way under diverse environmental conditions, a result of gradual 
shifts from small herbaceous structural designs to an  architecture that allows 
large upright plants to cope with bending or torsion (Niklas  2000 ). If many of 
these changes occur at some critical juncture during the evolution of increasing 
mass or stature (e.g., from 3 to 5 m in height: Givnish  1983 ), the tree-growth 
form could be suffi ciently distinct to treat the study of the canopies in ecosystems 
in which the uppermost stratum is dominated by trees (i.e., forests) as an inde-
pendent research discipline. Although this transformation process appears central 
to our very conception of “tree,” it remains poorly understood (Givnish  1984 ). 
Consider that trees allocate a large portion of their photosynthate to supportive 
tissues, and that, if they have high crowns, they pay a high price in aerodynamic 
drag, friction during fl uid transport, and increased potential for structural failure 
(see    Vogel  1996 ). Because of such costs, we would expect that plants would 
readily lose the tree-growth form when doing so would increase fi tness, especially 
given that the character of woodiness, and, apparently, treeness, has been labile 
in plant evolution (Judd et al.  1994 ; Dodd et al.  1999 ; Kim et al.  2004 ). Nevertheless, 
trees in deserts, savannas, and other open ecosystems grow relatively very tall, 
even though they occur widely separated from their neighbors and so by ecological 
criteria seem conspicuously overbuilt. Tree species adapted to these habitats may 
be large because they use their trunks to store water (Holbrook  1995 ); depend on 
height to avoid herbivory, as arborescent cacti do from tortoises (Dawson  1966 ) 
and acacias from giraffes (Brooks and Owen-Smith  1994 ); are maximizing 
reproductive dispersal (Richards  1986 ); are avoiding damage from fast-moving 
ground fi res (Givnish  1995 ); or are shading out grasses that compete with them 
for water (Walter  1973 ). Yet such factors appear neither pervasive nor severe 
enough to explain the almost ubiquitous occurrence of widely-spaced trees radi-
cally taller than the other plants in their communities. For example, giraffes 
always forage below 5 m, while savanna acacia trees often exceed 20 m in height 
(Young and Isbell  1991 , T.P. Young, pers. comm.). Plant evolutionary mechanics 
could hold the key to this apparent mystery; further investigations in this area 
might shed light on the nature of “treeness” itself.   

   3.     There is a substantive basis for treating trees as a distinct category within forests . 
Although adult trees are usually assigned to strata separate from other plants in 
a forest, the question of whether mature specimens are distinct as a group or are 
part of a continuum that contains other, smaller forest plants has not been clearly 
resolved, in part because of inconsistencies among the research approaches to 
stratifi cation (Parker and Brown  2000 ). In a frequency distribution of the size of 
mature vascular plant individuals, excluding vines, in a forest, is there a distinct 
peak (or peaks) corresponding with trees? Size-frequency distributions are com-
mon in studies of animal diversity, while, apparently, are absent from studies of 
complete plant communities (although some size-frequency distributions have 
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been included in studies of only the trees: Poorter et al.  2008 ). This is presumably 
because modular construction and indeterminate growth can make plant size 
diffi cult to assess (e.g., Sterck et al.  2003 ).   

   4.     There is a substantive basis for treating forests as a distinct category . Forests 
could be considered a distinct category of vegetation if, by some parameter of 
community physiognomy, they can be separated from other terrestrial ecosystems 
in a nonarbitrary way. Suppose we graph some measure of overall community 
height—say, for each major community type in a classifi cation of ecosystems, the 
modal height reached by the vegetation averaged over randomly chosen points on 
the ground. Suppose the distribution indeed turns out to be bi- or multimodal, 
such that forest systems represent a distinct peak. This would suggest that forests 
are more than an arbitrary construct that humans have split off from a continuum 
of natural communities. Perhaps on that basis, forest canopies can be distin-
guished as a separate research discipline. But so far, no information seems to 
exist on patterns of overall height across communities. If the available classifi ca-
tions are biased with respect to height (e.g., if ecosystem taxonomists have been 
“splitters” with respect to forest communities), or if community categories are 
largely artifi cial, at best representing opportunistic associations of species 
(Brown  1995 ), that could make attaining such information diffi cult.   

   5.     Attributes of tree-crown residents or ground-rooted plants in a forest prove  distinct . 
If future studies demonstrate that forests harbor canopy communities  distinct in 
some fundamental and reasonably abrupt way from the organisms dwelling on 
progressively lower kinds of vegetable communities, that might be taken as evi-
dence for distinguishing forest canopies as a distinct biological entity. This seems 
unlikely, however, given that most resident canopy organisms respond not to 
height but to environmental factors that happen to correlate with height (Moffett 
 2000 ). Thus, epiphytes seemingly associated with high forest- canopy situations 
occur closer to the ground when conditions allow (McCune  1993 ; Benzing  2012 ). 
Biodiversity in forest canopies can be extreme, but since most inventories of bio-
diversity to date have been made in tree crowns (e.g., Stork et al.  1997 ; Foottit and 
Adler  2009 ), the relation between species diversity and community scaling is 
open to question. For any given latitude, how much of the high diversity of forest-
canopy-dwelling species can be attributed to the canopies offering a relatively 
large overall mass, surface area, productivity, or microhabitat richness? There is 
also little basis to date for asserting that the organizational principles manifested 
by ground-rooted plants in forests (such as in the way the trees distribute horizon-
tally or vertically) may be distinct from those operating in other communities, 
beyond matters of scaling that might be expected to vary in a reasonably continu-
ous manner with successively shorter vegetative types (Moffett  2000 ).    

  In summary, there seems no unequivocal basis for the common practice of treating 
forest canopies independent of the study of the canopies of other terrestrial plant 
communities. Further general investigations into the nature of trees and forests, of 
course, may prove me wrong. As I have written elsewhere (Moffett  2000 ):

  Furthermore, I encourage the application of “canopy” to all fl ora, reserving the phrase “forest 
canopy” to concepts or situations necessarily limited to trees. ...Broadening our perspective on 
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canopies encourages us to pursue the reasonable hypothesis that most or all ecological 
processes scale up from a meadow to a redwood grove, so that problems  considered intracta-
ble in the latter can be addressed by looking at shorter [and faster growing] systems. 

3        More to Pond Scum than Meets the Eye 

   The Essence of knowledge is generalization. — 

 Hans Reichenbach ( 1951 ) 

   Incorporating into canopy science all the studies of all aboveground (aerial) plant 
organs and their occupants within any community (Moffett  2000 ) is a given, refl ecting 
a history of the use of the word canopy with both cultivated and natural forb and grass 
communities (e.g., Monteith 1975–1976, Campbell and Norman 1989, Burrows 
1990,  Roxburgh et al. 1993, Hirose and Werger 1995). But this represents only a fi rst 
step in the development of a truly comparative discipline. Indeed, though widely 
unappreciated by terrestrial “macrobiologists,” the word  canopy  is used by aquatic 
and microbial scientists to describe ecosystems that share many properties with ter-
restrial plant canopies. In contrast to terrestrial systems, where the hosts are usually 
vascular plants, these sessile organisms are typically algal species, zooxanthellae-
bearing animals, or erect animal species such as hydroids and bryozoans. For an 
exception, see the information on seagrass communities, including issues bearing on 
canopy stratifi cation, architecture, and biodiversity by Heck and Wetstone ( 1977 ), 
Kikuchi and Peres ( 1977 ), Williams and Heck ( 2001 ), and Pogoreutz et al. ( 2012 ). 

 The existence of plant-dominated aquatic systems and the remarkable parallels 
between these and other aquatic systems and terrestrial plant communities (described 
below) are among the reasons we should consider the common focus of canopy 
biology on terrestrial systems to be arbitrary and antiquated. To encompass these 
various kinds of hosts, canopy can reasonably be redefi ned as  the parts of any 
community of sessile organisms that emerge from a substratum . Canopy biology 
(or canopy science) is by this criterion  the study of the canopy of a community, 
including the organs of the sessile individuals and any affi xed products of those 
organisms, and anything in, on, or between those organs and products . The affi xed 
“products” can range from dead organisms, such as tree snags, to the secreted 
skeletons of corals or algal mucilage. 

 In this analysis,  sessile  describes an organism that emerges from or adheres to a 
substratum at positions fi xed over a large part of its life history.  Substratum  refers to 
any surface or structural matrix that provides points of attachment for a sessile spe-
cies, fi xing the location of individuals or colonies. (I prefer this word to substrate, 
which is confusing, especially for microbial ecosystems, because it is also used to 
describe enzyme reactions.) The substratum thereby establishes the spatial relations 
between sessile individuals, including, to some degree, the organs that project 
into the fl uid medium (the “canopy structure”). In turn, the sessile communities 
variously transform and stabilize the substratum (e.g., Stevenson  1996 ). (Many 
authors have applied the words structure and architecture to communities less 
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literally than I have here—e.g., simply to denote biodiversity or nonphysical attri-
butes of organization, such as niche spaces and trophic hierarchies; e.g., Connell 
 1975 .) The substratum typically is a solid, but the air–water interface may give 
some level of stability to the relative position of organisms, such as in fl oating algal 
mats (metaphyton). I exclude from the canopy communities, or portions of com-
munities, distributed entirely within the substratum matrix, as in the terrestrial soil 
community or its aquatic equivalent, the epipelic or bottom-sediment community 
(for instance, the microphytobenthos; MacIntyre et al.  1996 ). In some situations, the 
canopies of “different” ecosystems can be studied as one. In forest shade, stream-
dwelling algae may show some of the same physiological adaptations as understory 
terrestrial plants (Robinson and Minshall  1986 ; Hill  1996 ). 

 The following sections summarize the canopy biology of diverse ecosystems. 

  Kelp Canopies.  Describing kelp communities off South America, Darwin ( 1839 ) 
wrote, “I can only compare those great aquatic forests of the southern hemisphere 
with the terrestrial ones in the inter-tropical regions.” The term “kelp forest” has 
been common in the literature ever since. Application of the term “canopy” to kelp 
began with Jack Kitching, who, using a milk can with a window made from an old 
glass cookie box, was the fi rst scientist to successfully dive into this ecosystem 
(Kitching et al.  1934 ). In these and other algal communities, there is a relationship 
between canopy height and algal growth form (Neushul  1972 ; Hay  1986 ; Steneck 
and Dethier  1994 ). All kelp forests convergently accommodate guilds of species 
that fall into fi ve distinct “canopies,” or strata (including coralline crust as a stratum; 
Dayton  1985 ) (Fig.  3.2 ), the same number typically described for tropical forests 

  Fig. 3.2    The two upper strata in a kelp forest off the Aleutian Islands of Alaska. An understory of 
 Cymathera triplicata  kelp grows under an overstory of another kelp species,  Alaria fi stulosa  
(Photograph by David Duggins. All rights reserved. Reproduced with permission)       
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(e.g., Richards  1996 ). The composition of the understory community depends on 
the distribution and diversity of the species above them (Wernberg et al.  2005 ; 
Irving and Connell  2006 ). The largest and most complex canopies occur in shallow, 
productive sites (Vadas and Steneck  1988 ), as might be predicted given that water 
attenuates light sharply as compared to air in terrestrial communities.

   Many fi ndings from kelp forests parallel those for terrestrial communities, such 
as light attenuation through strata in relation to frond coverage (Gerard  1984 ), 
which at the benthos beneath kelp communities often declines to ca. 1 % of surface 
light, similar to tropical rainforests (Richards  1996 ); the importance of disturbance 
and gaps to succession (Neushul  1971 ; Foster  1975 ; Dayton  1975a ; Hurby  1976 ; 
Pearse and Hines  1979 ; Reed and Foster  1984 ; Dayton et al.  1999 ); the value of 
sunfl ecks to understory growth and survivorship (Wing et al.  1993 ); differential 
survivorship and growth rates that result from the shading of benthic plants 
(Kastendiek  1982 ; Santelices and Ojeda  1984 ; Dean et al.  1989 ; Miller et al.  2011 ) 
and phytoplankton (Borchers and Field  1981 ); and other diverse competitive effects 
leading to specialized shade-tolerant (understory) communities (Dayton  1975b ; 
Dayton et al.  1999 ). Unless predation on them is severe, sessile animals may out-
compete kelp in low-light conditions in deeper parts of the benthos (Foster  1975 ), a 
pattern that holds to some extent in understory shade in shallower waters, though 
low-light adapted algae also occur there. Dayton ( 1971 ) distinguishes competition 
for space on the substratum (“primary space”) from competition within the volume 
above that surface, that is, within the canopy (“secondary space”), a concept worthy 
of widespread application. Because of their fl exible tissues, kelp and other (Carpenter 
 1986 ) algal communities could in some ways be more ecologically comparable to 
grassland than to terrestrial forest (but see Holbrook et al.  1991 ), even though kelp 
can rise 50 m or more in height because of their reliance on the opportunities for 
fl otation offered by water. The capacity for upward growth in kelp is by this means 
greatly enhanced over nonwoody terrestrial plants. 

 There have been general studies on the relation between canopy residents and 
kelp forest structure. Many fi sh stratify in a kelp forests, although this generally 
becomes less pronounced as the fi sh mature (Anderson  1994 ), and structural fea-
tures of the forests infl uence fi sh diversity (Russell  1977 ). Shading by the kelp over-
story can reduce algal growth rates in lower strata, thereby altering the abundance 
of some fi sh relative to canopy gaps (Carr  1989 ; Schmitt and Holbrook  1990 ; Jones 
 1992 ). Manipulations of physical structure are common in the study of kelp com-
munities, showing, for example, that simplifying canopy structure can increase fi sh 
mortality by removing refuges (Anderson  2001 ). Predators can be so effi cient at 
feasting on prey that pass through kelp canopies that recruitment of these prey 
species to ecosystems closer to shore is strikingly reduced (Gaines and Roughgarden 
 1987 ). 

 In macroalgal mats on boulders and within tide pools, canopy-resident diversity 
relates to algal architectural complexity (Dean and Connell  1987 ; Hacker and 
Steneck  1990 ; for a successional study of this kind of ecosystem, see Sousa  1979 ). 
Williams and Seed ( 1992 ) review the positive and negative effects of epiphytic animals 
on large algae. 
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  Periphyton and Algal Turf Canopies . Periphyton (aufwuchs) constitute a “complex 
community of microbiota (algae, bacteria, fungi, animals, inorganic and organic 
detritus) that is attached to substrata” (Wetzel  1983 ; for further terms, see Weitzel 
 1979 )—the microbial equivalent of an epiphyte mat. Indeed, periphyton can be epi-
phytic (Ruinen  1961 ,  1975 ; Morris et al.  1997 ; Clafl in  1968 ; Whipps et al.  2008 ; for 
the rhizosphere equivalent, typically involving more bacteria than algae, see Pearce 
et al.  1995 ), albeit “periphyton” also applies to growth on nonliving or deceased 
substrata, such as submerged rock or leaf litter. Periphyton “have extensive vertical 
development on a small scale, and cells within the community matrix are tightly 
packed” (Boston and Hill  1991 ). They show a repeatable pattern of succession 
(Lowe et al.  1996 ; Sekar et al.  2004 ; Passy and Larson  2011 ), a pattern that can be 
disrupted by a high disturbance regime as occurs with communities on the surface 
of sand grains (Miller et al.  1987 ) except when algal mucilage binds the grains 
together, allowing further community development (Hoagland et al.  1982 ). 
Succession proceeds from a monolayer community to a stratifi cation of species and 
chemistry within a matrix of cells and their secretions (Jørgensen et al.  1979 ; 
Jørgensen and Revsbech  1983 ; Kuenen et al.  1986 ; Lassen et al.  1994 ; Johnson 
et al.  1997 ; Fierer et al.  2010 ). Stalked microalgae can contribute to the greater 
depth of late-successional communities, resulting in “an upperstory of growth per-
haps functionally analogous to the canopies characteristic of terrestrial forests” 
(Hoagland et al.  1982 ). Mature periphyton communities often have a dense understory 
of small cells overgrown by fi lamentous algae, though some interesting variants on 
this are shown in Fig.  3.3 . The    upper stratum provides attachment points for diatoms 
that live as epiphytes (Roos  1979 ; Roemer et al.  1984 ; Marks and Power  2001 ), 
described as “dependent organisms” or pseudoperiphyton, and treated as part of the 
same community as their hosts (Sládecková  1962 ). In addition, there appear to be 
algae that are the functional equivalent of vines (or more accurately, hemiepiphytes; 
Fig.  3.3b ). While some sessile algae cannot adhere to other algae and so require a 
direct connection with the substratum, other species may preferentially attach to 
algae in the layer below and thereby epiphytically form a canopy stratum of their 
own (Fig.  3.3a ). This strategy is unknown and probably biomechanically impossible 
within terrestrial canopies. Vines positioning their foliage uniformly above that of 
their hosts (Putz  1995 ) may approach it, although being rooted to the ground, these 
canopy plants are not epiphytes.

   Canopy complexity of periphyton may be greater at sites with higher light intensities 
(Hudon and Bourget  1983 ). Furthermore, the internal physiognomy depends on 
local fl ow regime, in part because greater turbulence increases the penetration of 
nutrients and light (Peterson  1996 ). Wetzel ( 1993 ) argues, however, that such 
penetration is diffi cult (unless aided by grazers: Hillebrand et al.  2008 ) and that the 
high productivity of periphyton is a result of effi cient recycling of nutrients within 
their canopies. Growth of the outer layer can shade the strata below (Johnson et al. 
 1997 ; Dodds et al.  1999 ) and block nutrient inputs to the understory (McCormick 
and Stevenson  1991 ; Peterson and Grimm  1992 ). Shading can lead to understory 
deterioration (Stock and Ward  1991 ) in time causing a community to slough from 
its substratum (Meulemans and Roos  1985 ). Substrata are colonized both by these 
detached communities (detrital microcosms; Korte and Blinn  1983 ) and by isolated 
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  Fig. 3.3    Multilayered periphyton attached to a screen in a freshwater aquarium ( a ) and to a screen in 
an Algal Turf Scrubber ( b ). Typically the layer directly attached to the screen (the hard rock or car-
bonate substratum in the wild) is dominated by either blue green (cyanobacteria) or a diminutive 
green ( Stigeoclonium ) or diatom algae (W. Adey, pers. com.). In ( a ), the upper layers are attached to 
the layer below them and not the substratum, and so these entire strata are epiphytic on lower strata. 
The middle layer consists of diatoms and small fi lamentous algae suspended in mucilage generated 
by the community. In contrast, when the overstory is made up of large, typically branched fi laments 
( b ), these are also attached to the substratum, along with the blue-green or small green and red 
“understory” algae. Much like vines (especially nomadic ones: Moffett  2000 ), the  Spirogyra  and 
 Dichotomosiphon  in 3b spiral around their supporting hosts like vines, apparently moving along them 
by rotation and circumnutation sensu Darwin (Yeh and Gibor  1970 ); in monoculture, the  Spirogyra  
will even coil around one another like plant tendrils with no alternative place to go. These two illus-
trations show what I would call “monodominant periphyton,” because only one species is affi  xed to 
the substratum, but more biodiverse communities clearly exist (Both illustrations are from Adey and 
Loveland ( 2007 ). Reproduced with the permission of the authors. All rights reserved)       
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cells in suspension (Stevenson  1983 ). Sloughing can be reduced where understory 
algae species are able to produce more photopigments or become increasingly 
heterotrophic in dim conditions (Tuchman  1996 ; Peterson  1996 ), in which case the 
periphyton can last longer and achieve higher biomasses. Because of the cycle of 
growth, death, and sloughing, the community that establishes after a site is grazed 
by herbivores may depend on the prior successional status at the site (Peterson 
 1996 ), among other factors (Tuchman and Stevenson  1991 ). 

 Turfs are fi lamentous periphyton communities, typically a few millimeters high 
(Fig.  3.4 ) that occur widely on coral reef surfaces and produce the bulk of reef 
primary productivity (   Adey and Steneck  1985 ). Disturbances (say, by herbivores or 
abrasion from the movements of taller algae overhead; Russell  2007 ) reduce turf 
height and increase light penetration and turbulence through their canopy (Carpenter 
 1986 ; Williams and Carpenter  1990 ; Carpenter and Williams  1993 ; Cheroske et al. 
 2000 ). Stratifi cation can occur within turfs, but is limited (Hackney et al.  1989 ; 
R.C. Carpenter, pers. comm.).

    Bacterial Films . Almost all bacteria live packed within surface-bound multispecies 
communities called biofi lms (Watnick and Kolter  2000 ). Until the 1980s, bacteria 
were studied mainly by traditional sampling and culture methods. Extrapolations 
from monospecies planktonic laboratory cultures led to serious misunderstandings 

  Fig. 3.4    Algal turf from St. Croix dominated by  Herposiphonia . Width of the image is about 1 mm 
(SEM photography by Robert S. Steneck. All rights reserved. Reproduced with permission)       
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about bacterial ecosystems (Costerton et al.  1995 ). Especially in light-exposed habi-
tats, cyanobacteria and their accumulated remains can induce thick perennial accre-
tions called microbial mats or stromatolites (Stal  2000 ), but non-photosynthetic 
mats thrive in dark habitats where there are few grazers (Teske and Stahl  2001 ). 

 Biofi lms often intergrade with eukaryote-dominated periphyton, and increasingly 
the term has been used broadly to include periphyton and even fungi (Reynolds and 
Fink  2001 ; Ramage et al.  2009 ). In the algal-dominated systems discussed in the 
previous section, for example, either bacteria or algae can colonize early in succes-
sion (Hoagland et al.  1982 ; Roeselers et al.  2007 ), and pioneer species of bacteria, 
in combination with certain diatoms and fungi, may “precondition” the substratum 
for adherence of subsequent algae, or provide the foundation they require for attach-
ment (Korte and Blinn  1983 ; Burkholder and Wetzel  1989 ; Hodoki  2005 ). In a 
developed periphyton community, the bacteria can be nutritionally dependent on 
excreted algal products (Haack and McFeters  1982 ; Sobczak  1996 ), but a reverse 
dependency can arise when nutrients are scarce (Scott et al.  2008 ), suggesting 
facultative mutualisms can develop (cf. Carr et al.  2005 ). The remainder of this sec-
tion will focus on communities dominated by bacteria, which have become the most 
extensively studied canopy system. 

 For macroscopic canopies, interest typically falls into two arenas: studies of the 
substratum-bound species themselves (the hosts) and studies on species that live 
within the canopy generated by the hosts (canopy residents). This distinction is 
apparently of limited utility for bacterial biofi lms and mats, which are formed of 
cells en masse, with a very strong coupling of structure and function. Light 
 penetration and chemical gradients are critical to the makeup of such communities, 
where the concentration of any nutrient consumed in the biofi lm typically decreases 
with depth (Jørgensen and Revsbech  1983 ; Kühl et al.  1996 ; Wimpenny and 
Kinniment  1995 ; Stal  2000 ; Ward et al.  2006 ; Stewart and Franklin  2008 ), such that 
anaerobic or anoxic species often occupy the depths of a fi lm (Jørgensen et al.  1986 ; 
Sagan and Margulis  1988 , p. 53–54; Ramsing et al.  1993 ; van Gemerden  1993 ). More 
complex aspects of spatial heterogeneity in these  communities are becoming evident 
(Kühl and Polerecky  2008 ). The internal organization of photosynthetic biofi lms 
and mats often includes stratifi cation in relation to light levels (Kühl and Fenchel 
 2000 ; Ward et al.  2006 ; Ramsing et al.  2000 ;    Al-Najjar et al.  2012 ). 

 While most biofi lm residents are sessile or at least relatively immobile within the cell 
matrix (Costerton et al.  1995 ), the integrity of biofi lms may be as much a product of 
a secreted matrix of polymers, which are complexly structured (Lawrence et al. 
 2007 ) and essential to biofi lm formation, as of the fi xed location of organisms 
(Flemming and Wingender  2010 ). Thus, while some species are held in space by 
intercellular connections (Schaudinn et al.  2007 ), motile species can shift position 
within the fi lm—for example, moving within the matrix to different “microzones” 
(strata)—in response to light or chemical cycles (Doemel and Brock  1977 ; Garcia- 
Pichel et al.  1994 ; Stal  2000 ); this is also true of some periphyton-dwelling diatoms 
(Johnson et al.  1997 ). Such movements can bring about distinct biofi lm morphologies 
(Klausen et al.  2003 ). Biofi lm residents are phenotypically distinct from conspecifi c 
planktonic forms, which function as a dispersal stage. The sloughing of bacteria 
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from fi lms, adhesion of the colonists to a surface or within the matrix, and other 
aspects of establishment and development of fi lms have been documented or 
modeled in three dimensions (Bryers  2000 ; Kierek-Pearson and Karatan  2005 ), as 
has the ecological succession of biofi lm residents through time (Lawrence et al. 
 1995 ; Korber et al.  1995 ;    Jackson  2003 ; Fierer et al.  2010 ). 

 The matrix of bacteria in a biofi lm was originally described as developing channels 
or pores through which nutrients enter and wastes leave the community (Costerton 
et al.  1994 ; Massol-Deyá et al.  1995 ; Stoodley et al.  1999a ). The structure of many 
biofi lms is so partitioned into independent units by these “waterways” that on close 
inspection, they do not resemble a “fi lm” at all but rather a landscape of cone-
shaped and mushroom-shaped bodies called “microcolonies” distributed intrigu-
ingly like trees in a forest (Fig.  3.5 ). When mature microcolonies grow into contact, 
they do not fuse but rather they wave past each other when shear forces operate 
(Stoodley et al.  1999a ; J.W. Costerton pers. com.). Microcolony formation is wide-
spread, but not universal (Wimpenny and Colasanti  1997 ), in natural and artifi cial 
systems, both for monocultures and for mixed-species communities, and is pre-
sumed to result from nutrient limitation and niche exploitation (Costerton et al. 
 1995 ). The distribution of microcolonies (including both the cells and the exopoly-
meric materials they secrete) and the channels and other spaces between them is 
referred to as biofi lm architecture (Lawrence et al.  1991 ). Both the species composi-
tion and the nature of the substratum affect this architecture (Costerton et al.  1995 ; 
Wimpenny and Colasanti  1997 ). So does water fl ow around the fi lms (Beyenal and 
Lewandowski  2002 ), which may cause entire microcolonies to drift across a surface 
(Stoodley et al.  1999b ; Rupp et al.  2005 ; Venugopalan et al.  2005 ), straining the 
defi nitions of “sessile” and “canopy.” There is a close coupling between such struc-
tural patterns, water fl ow, and the chemical landscape within such biofi lm canopies 
(Staal et al.  2011 ).

   The structure within and between microcolonies “provides very diverse habitats 
on a small scale, favoring biodiversity” (Flemming and Wingender  2010 ). 
Microbiologists have described biofi lms as coordinated communities with “primi-
tive homeostasis, a primitive circulatory system and metabolic cooperativity” that 
can “resemble the tissues formed by eukaryotic cells” (Costerton et al.  1995 ; 
Costerton and Lappin- Scott  1995 ). As Foster ( 2010 ) points out, such analogies can 
be overdone in that there is still little evidence of coordination in biofi lms, particu-
larly between species. Nevertheless, there appears to be a stronger interdependency 
between different taxa in a biofi lm than is typically described between most plants 
in a forest, such that certain bacteria depend on the metabolic products of other 
microbes (Kühl et al.  1996 ; van Gemerden  1993 ; Molin et al.  2000 ;    Paerl et al. 
 2000 ) and show other forms of cooperation (Crespi  2001    ; Mitri et al.  2011 ) and 
communication (Davies et al.  1998 ; Irie and Parsek  2008 ). Coordination can arise 
through rapid evolution (e.g., of parasitisms; Hansen et al.  2007 ) in part through 
gene transfer within the fi lms (Molin and Tolker-Nielsen  2003 ; Madsen et al. 
 2012 ). In addition to these mutualistic “consortia,” biofi lms and microbial mats 
are home to diverse competitive and predator–prey interactions (Lawrence et al. 
 1995 ; Allison et al.  2000 ; Foster and Bell  2012 ; van Gemerden  1993 ). A question 
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wide open for investigation is how selective forces and the potential for intense 
competition among different strains and species can lead to the seemingly cohesive 
systems that appear stable, functionally integrated, and structurally convergent 
(Nadell et al.  2008 ). 

 Stolzenbach ( 1989 ) and subsequent authors have applied the word “canopy” to 
biofi lms, and microbiologists have been increasingly interested in employing more 
integrative approaches (e.g., from landscape ecology: Battin et al.  2007 ). At the same 

  Fig. 3.5    Bacterial fi lms. The schematic drawing of a generalized biofi lm shows microcolonies 
separated by channels. Streamers develop as water fl ow increases, with the arrow indicating the 
water fl ow penetrating the fi lm (drawing by Peg Dirckx, reproduced with permission). Below is a 
confocal scanning laser microscopic image of microcolonies composed of the single bacterial spe-
cies  Pseudomonas aeruginosa  (E.S. Lauchnor and B. Pitts, Center for Biofi lm Engineering, 
Montana State University. Reproduced with permission)       
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time, new technological advances allow combined mapping of structure, composition, 
and function in biofi lms (Kühl and Polerecky  2008 ). Indeed, microbial communities 
can be easily manipulated for studies of canopy structure: Various combinations of 
microbial species or strains can be mixed, centrifuged, and allowed to form biofi lms 
to investigate assembly rules for canopies under specifi ed nutrient or substratum 
regimes. While most biofi lm studies rely on well-defi ned communities of one or a 
few species, formation of biodiverse microbial mats can be induced by treatment of 
natural sediments (Kühl et al.  2003 ). All canopy biologists can benefi t from knowing 
about biofi lm research (e.g., Guerrero et al.  2002 ). However, the central role of a 
polymer matrix and the frequency of facultative symbioses in bacterial communities 
suggest that some of the algae-based periphyton could be more straightforward 
microbial analogs of plant communities. 

  Coral Reefs as Canopies . Dahl ( 1973 ) writes of coral reefs that “organisms often 
occur in many layers and the substratum itself is organism generated.” Not surpris-
ingly, overarching corals have been described as producing a “canopy” overtopping 
an “understory” community (Baird and Hughes  2000 ). While a coral’s supportive 
structure is not living, it is an immediate by-product of living things and therefore 
can be treated as a part of a canopy in much the same way as snags are treated as 
part of a terrestrial canopy. Actually, there is a veneer of living tissue on live coral, 
much as there is a small zone of living phloem surrounding the mostly “dead” 
xylem of trees, so that in fact in both ecosystems, a large part of the structural foun-
dation of the canopy is dead. 

 Somewhat like trees (Horn  1971 ), the architectures of photosynthetic corals 
change with light regime (Porter  1976 ). Death or suppression of the growth of corals 
from shading by other corals results in an understory that can include shade- tolerant 
phototropic species (Stimson  1985 ; Anthony and Hoegh-Guldberg  2003 ) and that 
incorporates abundant sessile heterotrophs (Karlson  1999 ; Baird and Hughes  2000 ). 
Other shade-tolerant (or, in the case of sessile animals, shade- indifferent) species 
can densely occupy the undersurfaces of the corals themselves (Jackson et al.  1971 ; 
Maida et al.  1994 ). Colonization of these habitats can depend on active larval choice 
for “cryptic” (shaded) microsites (Maida et al.  1994 ; Mundy and Babcock  1998 ). 
The change of species composition with shading can parallel community changes 
resulting from light falloff with depth in the water column, such that understory 
shade permits certain deepwater species to extend their distribution into shallow 
water (an effect for which there is no terrestrial equivalent). In general, however, 
these understory corals are distinct from reef-building corals, as the latter, when 
adapted to dim conditions, tend to occur in deeper or more turbid water. Nutrient 
input to the understory is strongly dependent on wave action (Lowe et al.  2008 ). 
Other species prosper in the gaps formed by the death of overstory coral colonies, 
yielding a habitat mosaic (Stimson  1985 ). The coral reef community includes algae 
(among them the turfs discussed previously) that show a complex pattern of compe-
tition depending on their heights and interfrond densities (Steneck  1997 ). The structural 
complexity of coral reefs (including that of the algae within them: Levin and Hay 
 1996 ; see review by Graham and Nash  2012 ) provides for a high abundance and 
diversity of resident organisms, such as fi shes (Dahl  1973 ; Steele  1999 ; Holbrook 
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et al.  2003 ), clinging invertebrates (Vytopil and Willis  2001 ; Fraser and Sedberry 
 2008 ), and zooplankton (Porter  1974 ). Species richness declines when this com-
plexity degrades (e.g., as a result of environmental disturbances: Wilson et al. 
 2007b ; Graham et al.  2009 ; Alvarez-Filip et al.  2009 ,  2011 ). 

  Other Canopies . Various other sessile animals form dense aggregations that could 
be studied as canopies including both clonal (e.g., anemones, hydroids, bryozoans, 
ascidians) and nonclonal species such as mussels and barnacles (Paine and Suchanek 
 1983 ), for example, in fouling communities (Boyle et al.  2007 ). Further, if we allow 
that communities of these organisms have canopies, we can apply the idea of an 
extended phenotype (i.e., extending the defi nition of phenotype to include nonliving 
products of an organism such as nests or retreats: Dawkins  1982 ; Turner  2000 ) to 
enlarge the concept of canopy almost indefi nitely, depending on our interests. 
Least controversial would be static structures like coral skeletons whose architec-
tures and spatial relations are produced directly by living things that serve as “eco-
system engineers” (Jones et al.  1997 ). Tubes of polychaetes (Bell and Coen  1982 ) 
and stream fl y larvae (Pringle  1985 ) attract assemblages of plants and animals. These 
structures recolonize rapidly after defaunation, forming communities organized around 
tube architecture (Bell and Coen  1982 ). On land, patches of earthworm castings 
(Maraun et al.  1999 ; Aira et al.  2009 ) or of fungal fruiting bodies (O’Connell and 
Bolger  1997 ) are possible analogs of plant canopies. 

 Systems that are not canopies by any defi nition could be useful models for 
examining certain features of canopy life. Suspended bacteria can stratify under 
conditions of low turbulence (Guerrero and Mas  1989 ). Studies of the planktonic 
cells show that “increased productivity produces a physical scaffold to support bio-
logical heterogeneity (as, for example, in the spatial complexity of forest canopies) 
on which other species can build” (Morin  2000 ).  

4     The Geometry of Canopy Biology 

 If we expand our defi nition of  canopy  beyond what I suggested in Moffett ( 2000 ), 
to encompass all parts of any community of sessile organisms that project into a 
medium, on what basis might the discipline of canopy science rest on fi rmer (and 
more fruitful) ground? 

 Ecologists traditionally treat plants (or other sessile organisms) in two dimensions, 
or as points on the earth. While such topics as orientation in canopy ants, the conserva-
tion of orchids, and the foliage uptake of pollutants bear on canopy biology (i.e., sensu 
Moffett  2000 ), much of the research on these topics falls squarely within this tradition. 
For example, most studies of orientation in canopy ants ignore 3-D spatial issues bear-
ing on plant topographies, as well as other issues that could potentially be unique to 
canopy substrata, such as the properties of pheromone diffusion from bark as opposed 
to that from leaves. In a typical experiment, ants are not studied in their canopy envi-
ronment, as when a species normally found on foliage is housed on a fl at laboratory 
surface. While we can learn a great deal about canopy organisms with this approach, 
none of it has to do specifi cally with their origins in the canopy. 
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 By contrast, the core of canopy biology as an independent discipline can be 
characterized in large part as the science of treating communities of plants (or other 
sessile organisms) as three dimensional. This is becoming increasingly tractable 
even for whole forests (Shugart et al.  2010 ). More generally, creating a robust canopy 
science requires us to “put the canopy into canopy biology” through research that 
directly contributes to understanding the aspects of life associated with sessile 
organisms. This can be achieved by introducing the “z” axis or other canopy attri-
butes (as has been done in the studies on ant orientation by Jander and Voss ( 1963 ), 
Beugnon and Fourcassie ( 1988 ), Fourcassie and Beugnon ( 1988 ), Jander ( 1990 ), 
Klotz and Reid ( 1992 ), and Wohlgemuth et al. ( 2001 )). To take one example, the 
book  Geometry of Ecological Interactions , by Dieckmann et al. ( 2000 ), conforms to 
the 2-D “mainstream tradition” except for some material on three-dimensional gap 
structure, which is the only part of their coverage of ecological geometry that, by 
my criterion, represents canopy research. The same philosophy applies to aquatic 
systems, which offer unique experimental opportunities: Consider the value of arti-
fi cial reefs of varied architecture in understanding the productivity and diversity of 
canopy residents (Carr and Hixon  1997 ). 

 Moffett ( 1999 ) outlined attributes falling into six general categories that put the 
canopy into canopy biology, calling these the discipline’s core issues. By framing 
questions with respect to one or more of the categories (reviewed below), researchers 
can fundamentally contribute to canopy biology as a discipline. To keep my treat-
ment brief, I have chosen examples from the forest literature alone, although infor-
mation on each category is available for other kinds of canopies as well. While most 
scientifi c results can be partitioned along these categories, they clearly are not inde-
pendent issues; many studies make important contributions when looking at two or 
more of the six. Ultimately, much of canopy science may codify according to how 
these attributes have contributed, over ecological and evolutionary time, to the 
diversity of both the host organisms and their occupants.

    1.     Community Ecospace . For any canopy, the quantity and quality of space available 
to the canopy dwellers depend on the host structure. How much so is a matter of 
conjecture. Any small, nimble bird or agile climbing animal, such as a gibbon, 
seems to experience canopies as a volume, although even here, not all points in the 
volume may be accessible: Vegetation may be too dense for a fl ying bird (Cuthill 
and Guilford  1990 ) or too widely spaced for primates to cross (Cant  1992 ; Cannon 
and Leighton  1994 ). Small, fl ightless arthropods, such as ants and earthworms, are 
unlikely to register community ecospace in this way. Ants are restricted to mere 
millimeters of every surface within their territory, such that—despite models to 
the contrary (Hölldobler and Lumsden  1980 )—ants experience canopies as some-
thing between a 2-D and 3-D space (Moffett  1994 ,  2010 ). In essence, a canopy 
represents for them a highly warped surface. Like a science-fi ction ship using a 
wormhole to bridge points normally  experienced as quite distant from one another, 
weaver ants create shortcuts through this space by linking their bodies into 
chains, thus enabling them to quickly access new branches (Hölldobler and 
Wilson  1977 ). In this way, they can bridge entire tree crowns that otherwise 
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could be reached only by way of a long march down to, across, and up from 
the ground.   

   2.     Aggregate Properties of the Community . Here, I include the nonuniform vertical 
distribution of canopy species and their architectural parts (Fig.  3.1 ) and the 
concomitant stratifi cation of other elements of the canopy environment, such as 
microclimate (other gradients can exist, such as radially from the interior to the 
exterior of a tree crown [Freiberg 1997] or a bacterial microcolony [Stewart and 
Franklin  2008 ]). Parker and Brown ( 2000 ) (cf. McElhinny et al.  2005 ) criticize 
studies of stratifi cation for their lack of reproducibility, inconsistent terminol-
ogy, and other weaknesses. Regardless of the diffi culties, understanding strati-
fi cation is at the core canopy science, and to accommodate a variety of research 
interests, the word is best applied fl exibly (Moffett  2000 ). While many studies 
of terrestrial nutrient interception treat the canopy as a single “black box” with 
overall inputs and outputs (e.g., Coxson and Nadkarni  1995 ), some researchers 
have uncovered complex internal patterns within canopies that act as atmo-
spheric fi lters (Wiman et al.  1985 ; Meyers et al.  1989 ; Lovett and Lindberg 
 1992 ) and nutrient transfer systems (Pike  1978 ; Reiners and Olson  1984 ; 
Coxson et al.  1992 ; Lindo and Whiteley  2011 ). Defi ning strata or gradients 
requires broad spatial averaging, while explaining emerging patterns necessi-
tates research at a fi ner spatial scale. For example, bark  p H can vary with height 
in the trees (Hyvärinen et al.  1992 ). If the height distribution of an epiphyte cor-
responds generally to that of a certain bark  p H, we could propose that these plants 
prefer that  p H. Testing this hypothesis requires determining the detailed distribu-
tion of bark  p H at the locations occupied by the epiphytes (e.g., Gauslaa  1995 ) 
and then manipulating the  p H in the fi eld or a laboratory (e.g., Hallingbäck  1990 ). 
In short, as I wrote about stratifi cation elsewhere (Moffett  2000 ): A common fi nd-
ing is that short distances traversed vertically in canopies are equivalent in effect 
to changes likely to occur over much greater horizontal distances (e.g., Geiger 
 1965 ; Russell et al.  1989 ), demonstrating the critical importance for the height 
dimension as an environmental determinant. The vertical richness in microhabitat 
may be the primary reason so much diversity packs into structurally complex 
ecosystems. This could explain the high alpha diversity and low beta diversity of 
epiphytes in relation to other plants (McCune and Antos  1981 ), intimating the 
utility of quantifying a vertical component to beta diversity (DeVries et al.  2012 ).   

   3.     Host Distribution . Many canopy species may be specialists at residing on one or 
a few plant taxa (e.g., Erwin  1982 ) suggesting that hosts can be considered islands 
over evolutionary time (Janzen  1968 ,  1973 ) (Fig.  3.6 ), which could help in mod-
eling the processes that occur within and between plants that generate patterns of 
species distribution and diversity. Rather than treating hosts as islands in a uni-
form ocean to conform to the perspective of MacArthur and Wilson ( 1967 ), 
“patchwork” biogeography models could treat communities as a  continuum of 
host islands of varied acceptability as sources of food, retreats, or transit routes for 
each canopy-dwelling species. Diversity is further organized on scales both 
smaller and larger than that of a host. A distinct community can develop on any 
stable canopy element that qualifi es as an island sensu Haila ( 1990 ), such as a 
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fl ower (Seifert  1975 ), a phytotelmatum (Jenkins and Kitching  1990 ; Richardson 
 1999 ), a leaf (to a microbe: Andrews  2006 ), or even certain microclimatic 
features (Herwitz and Slye  1992 ). Even ant territories could form habitat islands 
within tropical canopies (Moffett  2010 , p. 132–133). The territories of different 
ant species are distributed as a mosaic that overlays, but are partially independent 
of, the mosaic of tree crowns (e.g., Dejean et al.  1999 ). Ants scour their territories 
to drive off intruders and kill prey while promoting the survival of species-specifi c 
assemblages of associates (Hölldobler and Wilson  1990 ). As with other island-
like canopy features, the persistent domination of different aggressive ants with 
large colonies across the canopy volume may add to the potential for other species 
to pack into vegetable space.

       4.     Host Architecture . All canopies, from redwood forests to biofi lms (Lawrence et al. 
 1991 ), have varied architectural parts. In forest ecology, a burgeoning literature 
on this topic covers the size, angles, distributions, development, and spatial 
relations of aerial plant parts. Classically, the models of Hallé et al. ( 1978 ) have 
been used to describe the architecture of trees (Fig.  3.7 ). One key practitioner 
considers the “Hallé-Oldeman architectural model” classifi cation “comparable 
to the development of the binary system of nomenclature by Linnaeus” 
(Tomlinson  1983 ). Nonetheless, the system has been little used by non-morphol-
ogists, arguably in part because of the overall neglect of the  potential importance 
of substratum architecture on canopy organisms (but see Hallé  1990 ). There are 
studies of the effects of simple architectural attributes, especially branch angle 
and width, on the growth of epiphytes (e.g., Rasmussen  1975 ; Ingram and 
Nadkarni  1993 ; Moe and Botnen  1997 ; Zotz  2006 ) and on animal locomotion, 

  Fig. 3.6    The patchwork of different tree species in a forest canopy is shown here by the distribu-
tion of gaudy fl owering trees ( Vochysia ferruginea ) in the Osa Peninsula of Costa Rica (Mark 
W. Moffett/Minden Pictures. All rights reserved)       
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particularly in reptiles (Losos and Greene  2009 ; Byrnes and Jayne  2012 ) and 
primates (Demes et al.  1995 ; Povinelli and Cant  1995 ; Dagosto and Yamashita 
 1998 ; Hamrick  1998 ; McGraw  1998 ; Young  2009 , just to mention a few citations 
on positional behavior). Yet few broadly scaled studies of how community-level 
aspects of plant architecture infl uence canopy life have been done, excluding 
some examples for insects (e.g., Lawton  1983 ; Sinoquet et al.  2009 ). Consider 
that many tropical canopies have well-beaten vertebrate highways extending 
from tree to tree, which can be detected by the epiphytes that spread to each side 
of a branch like hair from a part (Perry  1978 ; Sillett et al.  1995 ). Perry ( 1978 ) 
found evidence of multispecies use and active pruning of these trails. But as yet, 
no one has mapped such a trail in relation to the tree architectures available 
locally, or documented how the trail originates, how long it lasts, or how usage 
shifts with changes in canopy structure and resource availability.

        5.     Open Space . Not even biofi lms are a continuous matrix of organisms: All canopies 
consist of a framework occupying a dynamic fl uid matrix that has open commu-
nication and exchange with the adjacent atmosphere or hydrosphere, which typically 
includes the bulk of canopy volume (Chiarucci et al.  2002 ). Free space (air or 
water) within canopies merits special consideration, because of its potential 
effects on microclimate and on the locomotion or dispersal of organisms. Many 

  Fig. 3.7    The architecture of 
canopy species is exemplifi ed 
by an immature  Ceiba 
pentandra  tree from 
Cameroon, showing the 
“bicycle spoke” branching 
pattern of Massart’s 
architectural model (Mark 
W. Moffett/Minden Pictures. 
All rights reserved)       
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aspects of this topic remain virtually ignored. Space between forest trees is 
commonly distinguished through the use of two categories:  gaps , the result of 
plant death, and the openings resulting from  shyness , which is often the result of 
diminished plant growth and reconfi guration—that is, plant foraging (Hutchings 
and de Kroon  1994 ), although physical abrasion can also be involved in shyness 
patterns (Franco  1986 ) (Fig.  3.8 ). Gaps are commonly studied spaces, because of 

  Fig. 3.8    Open spaces within forests include shyness between tree crowns, as shown in a grove of 
 Dryobalanops lanceolata  trees in Peninsular Malaysia ( above ). Tree spacing is a challenge for the 
mobility of canopy-dwelling species, including for weaver ants ( Oecophylla smaragdina) , which 
bridge gaps by forming living chains of workers ( below ) (Both images are from Mark W. Moffett/
Minden Pictures. All rights reserved)       
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their role in forest succession and species-diversity patterns (Lieberman et al.  1989 ). 
Spaces represent barriers to some species and pathways (fl yways) or resource (light) 
access and growth opportunities to others (e.g., Aluja et al.  1989 ; Brady et al.  1989 ; 
Cuthill and Guilford  1990 ; Cannon and Leighton  1994 ; Brigham et al.  1997 ; Aylor 
 1999 ; Svenning  2000 ; Montgomery and Chazdon  2001 ; Dial et al.  2004 ;    Randlkofer 
et al.  2010 ; Byrnes and Jayne  2012 ). Little information exists, however, on how the 
distribution of open space might be involved in structuring the populations of canopy 
residents. There is a tendency to think in terms of canopy structures such as trunks 
and branches when the space between structures could be the resource used, as 
might be the case among gliding animals (Moffett  2000 ), though competition for 
space per se is seldom likely (Wilson et al.  2007a ). Within the open spaces, bound-
ary layers—the regions of lowered fl uid velocity that exist around any surface in a 
turbulent medium—are a general feature of attached communities. Their presence 
partially isolates canopies from the surrounding medium and thereby can increase 
community reliance on effi cient and potentially autogenically controlled internal 
(within-canopy) nutrient cycling. This isolation may be particularly important in 
fl owing water (Mulholland  1996 ), where canopy physiognomy can substantially 
ameliorate the downstream displacement of chemicals or of any organisms that are 
moving within a canopy or that have a poorly developed capacity to attach to a 
substratum.   

   6.     Physical and Chemical Properties of Structural Elements . In all canopies, the 
sessile hosts present associated species with a variety of surfaces, both between 
host individuals or species and within each host (such as wood versus leaves in a 
tree). These structural elements vary in their properties; examples include the 
capacity for insulation or water absorption, tendency to leach nutrients, effi -
ciency at transmitting vibration, and their texture (Fig.  3.9 ), stability, density, 
hardness, compliance, stiffness, strength, pH, and so on. How do such variables 
affect life on or in a host? One of the oldest areas of canopy investigation in 
terrestrial biology is the question of substratum choice by epiphytes, especially 
cryptogams (e.g., Barkman  1958 ). Another area of intensive study has been 
herbivory as it relates to secondary compounds, nutrient content, and the 
mechanical diffi culties of feeding (Schowalter  2011 ). Outside of these focal 
points, the literature is widely scattered, leaving many potential research avenues 
of enormous prospects.

5            Getting to the Root of the Matter 

 Much of the language and thinking of forest canopy biology has been predicated on 
notions of plants as supports for the organisms residing in them (epiphytes, vines, 
and so on). Structural support between individuals occurs as well in the rhizosphere 
(Moffett  2001 ), reminding us that distinctions between above- and belowground 
plant parts can be arbitrary. In many ways, it would be logical to defi ne words such 
as “epiphyte” so that they apply to the host in its entirety (e.g., a tree from root to 
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crown: in marine biology, a more inclusive term, epibiont, describes any nonpara-
sitic species living on any part of the surface of another organism; Wahl  1997 ). For 
many research purposes, this idea suggests the value of expanding beyond the realm 
of canopy biology to fashion a comprehensive science of sessile communities, from 
crowns to roots (or their equivalents). This nascent subject, which I refer to as  struc-
tural ecology , would apply the principles of canopy biology to communities as a 
whole. 

 This would be no big leap for communities structured around sessile taxa lacking 
elaborate organs that penetrate the substrate, such as algae or corals. In such species, 
nutrient inputs tend to be greatest in the upper (outer) canopy rather than at or in the 
substratum, such that traits adaptive for light and nutrient procurement function 
almost entirely in synchrony (McCormick  1996 ). I focus instead on plants, with 
their extensive root systems. It is true that roots evolved from shoots prior to the 
evolution of leaves (Barlow  1994 ; Langdale  2008 ) and have remained developmen-
tally distinct from leaves. In separating canopy from rhizosphere, however, it is 
more signifi cant that roots and shoots are not necessarily distinguishable in either 
function or location relative to the ground surface: Shoots can absorb nutrients and 

  Fig. 3.9    The physical and 
structural properties of trees 
are important to canopy 
residents. Here a jararaca 
snake ( Bothrops jararaca ) is 
able to climb the trunk of an 
 Araucaria  tree in Brazil by 
gripping irregularities the 
rough bark (Mark W. Moffett/
Minden Pictures. All rights 
reserved)       
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water (Parker  1983 ; Schaefer and Reiners  1989 ) and can occur belowground, where 
they are referred to as rhizomes, and roots can occur aboveground, where they can 
be photosynthetic (Benzing  1991 ) or have ventilation and aeration functions, as in 
mangroves. The distinction made by botanists between belowground and above
ground (and often between root and shoot) has been largely methodological, a mat-
ter of choice between using a climbing rope or a shovel, for instance. The resulting 
academic fragmentation can be transcended, as in research on root stratifi cation (or 
lack of clear strata) by several groups of researchers (Mommer et al.  2010 ;    Frank 
et al.  2010 ; Kesanakurti et al.  2011 ; de Kroon et al.  2012 ). Of the published studies 
in recent years on the rhizosphere, efforts of this kind most closely follow the para-
digm for canopy studies developed in this review. 

 The fi eld of structural ecology will by necessity emerge in slow increments. While it 
is true that ecology took a long time to enter the treetops (Moffett and Lowman 
 1995 ), in many ways, it is not the aerial world but the subterranean one that remains 
most alien to us today, given the rhizosphere’s complexity (compare Beare et al. 
 1995  with Freiberg  1997 ), inaccessibility barring in most cases wholesale destruc-
tive intrusion (Smit et al.  2000 ), and diffi culties in identifying plants from their 
roots (Mommer et al.  2011 ). Root systems and the species associated with their 
rhizosphere therefore could merit consideration equal to the rainforest canopy as the 
last—though assuredly not the highest (sensu Moffett  1994 )—biotic frontier (André 
et al.  1994 ,  2002 ; Decaëns  2010 ). Compared with their crown architecture, the 
architecture of plant root systems in natural settings is poorly known (but see, e.g., 
Jeník  1978 ; Atger and Edelin  1993 ). This includes the links between the above- and 
belowground communities, which thus far have largely been framed in terms either 
of lone plants or of the above- versus belowground ecologies as gross-level com-
partments, rather than in terms of detailed architecture and stratifi cation (Coleman 
et al.  1983 ; van der Putten et al.  2001 ; Moore et al.  2003 ; de Deyn and van der 
Putten  2005 ; Wardle et al.  2004 ; Poorter et al.  2012 ). Despite confounding effects 
from competition (e.g., Mahall and Callaway  1992 ; Burgess et al.  1998 ; Schenk 
 2006 ), root systems in nature are seldom isolated: Consider the drawings in Weaver 
and Clements ( 1929 ) of herb and grass communities (the distribution of tree roots is 
not known to this detail, but see Chilvers ( 1972 ), Lyford ( 1975 ), and the fi gures in 
Külla and Lõhmus ( 1999 )) (Fig.  3.10 ). Still, 3-D studies of roots that extend beyond 
simple depth measurements of the kind reviewed by Jackson et al. ( 1996 ) and 
Schenk and Jackson ( 2002 ) are scarce (Tsegaye et al.  1995 a ,  b ; Lynch et al.  1997 ; 
Ge et al.  2000 ; Pages  2000 ; Pages et al.  2000 ; Danjon et al.  2008 ; Fang et al.  2012 ), 
and most examples have been considered at the level of a single plant rather than of 
a community, although see the descriptions of the architecture and stratifi cation of 
root systems by Caldwell and Richards ( 1986 ), Mommer et al. ( 2010 ), and Postma 
and Lynch ( 2012 ).

   How would parasitology stand as a coherent discipline if its practitioners chose 
to look at the head of their subject while ignoring what its feet were doing? By 
amalgamating the fi ndings from canopy biology with those from soil sciences, 
terrestrial biologists could fashion a comprehensive science of plant associates.  
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6     Conclusions Vis-à-vis Biodiversity 

 There are species from every kingdom of life that attach to or grow from substrata, 
and, when aggregated, these organisms form “a three-dimensional complex of 
structures,” as Spies ( 1998 ) described forests, whose parts that emerge from the 
substratum in aggregate can be (and often have been) described as canopies. Often, 
terrestrial studies appear to be categorized as “canopy biology” either on the basis 
of inaccessibility, as when specialized gear is required to access trees (Moffett and 
Lowman  1995 ), or on the basis of the communities’ cover-like properties. (In the 
latter case,  canopy  is treated as synonymous with overstory or used more broadly as 
any stratum in which sessile host organs are distributed so as to appreciably shade 
the layers below, as the word can be used in marine science; Dayton  1975a ; Baird 
and Hughes  2000 .) Because such criteria are arbitrary and of limited general import, 

  Fig. 3.10    Rooting pattern of a group of Norway spruce trees, where root growth and distribution 
refl ects competitive interactions (Gebauer and Martinková  2005 ) that are most intense near the soil 
surface, as they are for most plants (Photo by Roman Gebauer. All rights reserved. Reproduced 
with permission)       
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I apply the word canopy to all above-substratum parts of sessile communities 
(of plants, when I originally described this idea in Moffett  2000 ). The common 
feature distinguishing studies as canopy biology is the treatment of sessile commu-
nities in three spatial dimensions, along with certain other attributes that are unique 
to life within this “canopy space.” 

 Why are the three-dimensional attributes of communities important enough to 
serve as the basis for a fi eld of study? Taken in aggregate, the architecture of affi xed 
life forms such as plants serves as scaffolding for much of the biological richness of 
this planet. By projecting into fl uid media, canopies can augment productivity 
through increasing the biotic mass and the live surface area available for capturing 
and processing nutrients and energy and can enhance α-diversity through transform-
ing in a heterogeneous way the climatic and chemical properties of the space they 
occupy, potentially multiplying the available niche space associated with a given 
surface area of the earth (e.g., Morin  2000 ; Moffett  2000 ; Hill and Hill  2001 ; Walla 
et al.  2004 ; DeVries et al.  2012 ). Moreover, canopies can provide retreats from preda-
tors, competitors, and adverse conditions, as well as additional surface area to attract 
or accumulate new species and the nutrients required to support a rich community 
(e.g., Crowder and Cooper  1982 ; Dean and Connell  1987 ; Lovett and Lindberg 
 1992 ; Jones et al.  1997 ; Johansen et al.  2008 ). We have yet to explain the differences 
and even more intriguing similarities in the physical structure and dynamics of 
canopies that develop in air as contrasted with water, and across orders of magni-
tude in host size: For example, compare Edred Corner’s views on trees with Timothy 
Allen’s on microalgae (Corner  1967 ; Allen  1977 ). Surely these size extremes are of 
special fascination; that may be the primary reason (beyond fulfi lling our sense of 
adventure) that many of us climb trees to collect our data. Will scaling functions 
prove suffi ciently linear to permit straightforward extrapolations across the full 
expanse of the different ecosystems? 

 Finally, canopy biology will have to be integrated into a more coherent under-
standing of sessile communities as a whole—that is, by taking similar account of the 
role of within-substratum organs such as roots and holdfasts. A central challenge of 
this holistic approach to communities, which I have called structural ecology, will 
be to determine the rules by which ecosystems, including both the sessile species and 
the residents of those species, assemble in all their three-dimensional glory, thereby 
creating opportunities for increased production and diversity—an idea that can be 
traced back to MacArthur and MacArthur ( 1961 ).     
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